
Encrypting Long and Variable-Length
Messages

Block Cipher Modes of Operation
CS/ECE 407

1

Today’s objectives

Discuss Block Cipher Modes of Operation

See how to encrypt long messages

Explain problem of variable length messages

Show how to pad messages to achieve CPA
security

2

3

Alice Bob

Eve

ct0, ct1

A cipher (Enc, Dec) has security against a chosen
plaintext attack (CPA) if:

k <-$
eavesdrop(m0, m1):
 ct <- Enc(k, m0)
 return ct

{0,1}λ

c≈
k <-$
eavesdrop(m0, m1):
 ct <- Enc(k, m1)
 return ct

{0,1}λ

4

F : {0,1}λ × {0,1}n → {0,1}n

 is called a pseudorandom
permutation (or block cipher) if:

F

k <-$

apply(x):
 return F(k, x)

{0,1}λ
D <- empty-dictionary

apply(x):
 if x is not in D:
 D[x] <-$ \ values
 return D[x]

{0,1}n

c≈

There exists s.t. F−1 F−1(k, F(k, x)) = x
and

5

Block Cipher Modes of Operation

F(k, ⋅)
m ∈ {0,1}λ c

Think: AES

?
m ∈ {0,1}n≫λ c

6

Enc(k, m):
 r <-$
 c0 <- F(k, r) m
 c <- (c0, r)
 return c

Dec(k, (c0, r)):
 return F(k, r) c0

{0,1}λ

⊕

⊕

Randomized CPA-Secure Encryption

In practice, this
doubles the

length of
ciphertexts!

Can we
amortize this
added cost?

Problematic for
long messages

7

Block Cipher Modes of Operation

Electronic Codebook (ECB) Mode —
WARNING: NOT RECOMMENDED!

Cipher Block Chaining (CBC) Mode — Very common in practice

Counter (CTR) Mode

8

Electronic Codebook (ECB) Mode —
WARNING: NOT RECOMMENDED!

Enc(k, m_1 | … | m_n):
 for i in 1 to n
 c_i <- F(k, m_i)
 return c_1 | … | c_n

Dec(k, c_1 | … | c_n):
 for i in 1 to n
 m_i <- (k, c_i)
 return m_1 | … | m_n

F−1

9

ECB Mode: Do not use!!!

“Good” encryption ECB Mode

10

Cipher Block Chaining (CBC) Mode

Enc(k, m_1 | … | m_n):
 c_0 <-$
 for i in 1 to n
 c_i <- F(k, m_i c_i-1)
 return c_0 | c_1 | … | c_n

Dec(k, c_0 | c_1 | … | c_n):
 for i in 1 to n
 m_i <- (k, c_i) c_i-1
 return m_1 | … | m_n

{0,1}λ

⊕

F−1 ⊕

“initialization vector”

11

Counter (CTR) Mode

Enc(k, m_1 | … | m_n):
 r <-$
 for i in 1 to n
 c_i <- F(k, r + i) m_i
 return r | c_1 | … | c_n

Dec(k, r | c_1 | … | c_n):
 for i in 1 to n
 m_i <- F(k, r + i) c_i
return m_1 | … | m_n

{0,1}λ

⊕

⊕

“initialization vector”

12

Block Cipher Modes of Operation

Electronic Codebook (ECB) Mode —
WARNING: NOT RECOMMENDED!

Cipher Block Chaining (CBC) Mode — Very common in practice

Counter (CTR) Mode — Allows parallelism

Can be adjusted to achieve CPA Security

13

A cipher (Enc, Dec) has security against a chosen
plaintext attack (CPA) if:

k <-$
eavesdrop(m0, m1):
 ct <- Enc(k, m0)
 return ct

{0,1}λ

c≈
k <-$
eavesdrop(m0, m1):
 ct <- Enc(k, m1)
 return ct

{0,1}λ

14

A cipher (Enc, Dec) has security against a chosen
plaintext attack (CPA) if:

k <-$
eavesdrop(m0, m1):
 ct <- Enc(k, m0)
 return ct

{0,1}λ

c≈
k <-$
eavesdrop(m0, m1):
 ct <- Enc(k, m1)
 return ct

{0,1}λ

Definition is too strict! It only works for fixed-length messages

15

A cipher (Enc, Dec) has security against a chosen
plaintext attack (CPA) if:

k <-$
eavesdrop(m0, m1):
 if |m0| != |m1|:
 return error
 ct <- Enc(k, m0)
 return ct

{0,1}λ

c≈

k <-$
eavesdrop(m0, m1):
 if |m0| != |m1|:
 return error
 ct <- Enc(k, m1)
 return ct

{0,1}λ

16

Padding:

Consider:

 ct <- Enc(k,)0λ−1

How should we handle this?

17

Padding:

pad(m) : takes input message, outputs string whose length
is multiple of block length

unpad(m) : inverse of pad

Correctness: unpad(pad(m)) = m

18

Padding:

pad(m) : takes input message, outputs string whose length
is multiple of block length

unpad(m) : inverse of pad

Correctness: unpad(pad(m)) = m

Suggestion: pad appends 0s until m is multiple of block length

19

Padding:

pad(m) : takes input message, outputs string whose length
is multiple of block length

unpad(m) : inverse of pad

Correctness: unpad(pad(m)) = m

Suggestion: pad appends 0s until m is multiple of block length

20

Padding:

pad(m) : takes input message, outputs string whose length
is multiple of block length

unpad(m) : inverse of pad

Correctness: unpad(pad(m)) = m

Suggestion: Pad by a single 1, then pad with 0s until multiple of block length
To unpad, strip last 1 and all following 0s

21

Padding:

pad(m) : takes input message, outputs string whose length
is multiple of block length

unpad(m) : inverse of pad

Correctness: unpad(pad(m)) = m

Exercise: suppose that m is already a multiple of the block length.
Does Alice need to pad it?

Suggestion: Pad by a single 1, then pad with 0s until multiple of block length
To unpad, strip last 1 and all following 0s

22

Alice Bob

Eve

ct0, ct1

Alice and Bob can now exchange arbitrary numbers of arbitrary-length
messages with confidentiality

However, we have no notion of authenticity

k k

23

Alice Bob

Eve

ct0, ct1

Alice and Bob can now exchange arbitrary numbers of arbitrary-length
messages with confidentiality

However, we have no notion of authenticity

k kct’

So far our definition of security provides no way for Bob to check that a
ciphertext is a “good one"

Today’s objectives

Discuss Block Cipher Modes of Operation

See how to encrypt long messages

Explain problem of variable length messages

Show how to pad messages to achieve CPA
security

24

