Encrypting Long and Variable-Length Messages

Block Cipher Modes of Operation CS/ECE 407

Today's objectives

Discuss Block Cipher Modes of Operation

See how to encrypt long messages

Show how to pad messages to achieve CPA security

Explain problem of variable length messages

Alice

A cipher (Enc, Dec) has security against a chosen plaintext attack (CPA) if:

$\mathsf{k} \leftarrow \$ \{0,1\}^{\lambda}$ eavesdrop(m0, m1): $ct \leftarrow Enc(k, m0)$ return ct

ct0, ct1

Bob

Eve

	$k \leftarrow \$ \{0,1\}^{\lambda}$
C	<pre>eavesdrop(m0, m1):</pre>
\approx	$ct \leftarrow Enc(k, m1)$
	return ct

F is called a **pseudorandom** permutation (or block cipher) if:

There exists F^{-1} s

 $k \leftarrow \$ \{0,1\}^{\lambda}$ apply(x): **return** F(k, x)

$F: \{0,1\}^{\lambda} \times \{0,1\}^{n} \to \{0,1\}^{n}$

s.t.
$$F^{-1}(k, F(k, x)) = x$$

Block Cipher Modes of Operation

C

Randomized CPA-Secure Encryption

Enc(k, m):

$$r \leftarrow \{ \{0,1\}^{\lambda} \\ c0 \leftarrow F(k, r) \oplus m \\ c \leftarrow (c0, r) \\ return c$$

Dec(k, (c0, r)):
 $return F(k, r) \oplus c0$

In practice, this doubles the length of ciphertexts!

Problematic for long messages

Can we **amortize** this added cost?

Block Cipher Modes of Operation

Electronic Codebook (ECB) Mode — **WARNING: NOT RECOMMENDED!**

Cipher Block Chaining (CBC) Mode – Very common in practice

Counter (CTR) Mode

Electronic Codebook (ECB) Mode – WARNING: NOT RECOMMENDED!

Enc(k, m_1 | … for i in 1 to $c_i \leftarrow F(k$ **return** c_1 Dec(k, c_1 | ... for i in 1 to $m_i \leftarrow F^{-1}($ return m_1

. m_n):
.on
(, m_i)
c_n
. c_n):
lo n
(k, c_i)
m_n

ECB Mode: Do not use!!!

Cipher Block Chaining (CBC) Mode

Enc(k, m_1 | ..
c_0 ← \$ {0,1}
for i in 1 t
c_i ← F(k
return c_0 |
Dec(k, c_0 | c
for i in 1 t
m_i ←
$$F^{-1}$$

return m_1 |

Enc(k, m_1 | ..

$$r \leftarrow \$ \{0,1\}^{\lambda}$$

for i in 1 t
 $c_i \leftarrow F(k$
return r | c
Dec(k, r | c_1
for i in 1 t
 $m_i \leftarrow F(k$
return m_1 | ..

Counter (CTR) Mode

Block Cipher Modes of Operation

Electronic Codebook (ECB) Mode — WARNING: NOT RECOMMENDED!

Cipher Block Chaining (CBC) Mode – Very common in practice

Counter (CTR) Mode – Allows parallelism Can be adjusted to achieve CPA Security

A cipher (Enc, Dec) has security against a chosen plaintext attack (CPA) if:

k ←\$
$$\{0,1\}^{\lambda}$$

eavesdrop(m0, m1):
ct ← Enc(k, m0)
return ct

A cipher (Enc, Dec) has security against a chosen plaintext attack (CPA) if:

k ←\$
$$\{0,1\}^{\lambda}$$

eavesdrop(m0, m1):
ct ← Enc(k, m0)
return ct

$$\begin{array}{l} C \\ \thickapprox \\ \\ \boldsymbol{\mathcal{C}} \\ \boldsymbol{\mathcal{C}} \\ \boldsymbol{\mathcal{C}} \\ \text{eavesdrop(m0, m1):} \\ \text{ct} \leftarrow \text{Enc(k, m1)} \\ \textbf{return ct} \end{array}$$

Definition is too strict! It only works for **fixed-length** messages

A cipher (Enc, Dec) has security against a chosen plaintext attack (CPA) if:

$$k \leftarrow \{0,1\}^{\lambda}$$
eavesdrop(m0, m1):
if |m0| \neq |m1|:
return error
ct \leftarrow Enc(k, m0)
return ct

	$k \leftarrow \$ \{0,1\}^{\lambda}$	
	<pre>eavesdrop(m0, m1):</pre>	
C	$if m0 \neq m1 $:	
\approx	return error	
	$ct \leftarrow Enc(k, m1)$	
	return ct	

Consider:

ct \leftarrow

How should we handle this?

Padding:

Enc(k,
$$0^{\lambda-1}$$
)

- pad(m) : takes input message, outputs string whose length is multiple of block length

 - **Correctness:** unpad(pad(m)) = m

- pad(m) : takes input message, outputs string whose length is multiple of block length

 - **Correctness:** unpad(pad(m)) = m
- Suggestion: pad appends 0s until m is multiple of block length

- pad(m) : takes input message, outputs string whose length is multiple of block length

- **Correctness:** unpad(pad(m)) = m
- Suggestion: pad appends 0s til m is multiple of block length

- pad(m) : takes input message, outputs string whose length is multiple of block length

 - **Correctness:** unpad(pad(m)) = m
- **Suggestion:** Pad by a single 1, then pad with 0s until multiple of block length To unpad, strip last 1 and all following 0s

- pad(m) : takes input message, outputs string whose length is multiple of block length

 - **Correctness:** unpad(pad(m)) = m
- **Suggestion:** Pad by a single 1, then pad with 0s until multiple of block length To unpad, strip last 1 and all following 0s
 - **Exercise:** suppose that m is already a multiple of the block length. Does Alice need to pad it?

Alice and Bob can now exchange arbitrary numbers of arbitrary-length messages with confidentiality

However, we have no notion of authenticity

Alice and Bob can now exchange arbitrary numbers of arbitrary-length messages with confidentiality

However, we have no notion of authenticity

So far our definition of security provides no way for Bob to check that a ciphertext is a "good one"

Today's objectives

Discuss Block Cipher Modes of Operation

See how to encrypt long messages

Show how to pad messages to achieve CPA security

Explain problem of variable length messages